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Numerical methods are developed for computing the discrete spectrum associated with a 
square root kinetic energy operator. These types of equations are encountered in relativistic 
quantum mechanical models. We reformulate the dynamical equation into an equivalent 
equation involving bounded operators. We strongly approximate these operators using matrix 
elements of operators that do not involve square roots. The method works in both momentum 
and configuration space. We test the method for a strong Coulomb interaction and for a 
quark-antiquark potential. We discuss relativistic corrections to the kinetic energy for systems 
of light quarks. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

The square root equation, 

was one of the first relativistic generalizations of the Schrodinger equation It was 
discarded because of difficulties with the square root operator Cl]. In this paper a 
nonperturbative method for treating the square root operator is presented. 

Equations of the form (1.1) occur naturally in Poincare invariant quantum 
mechanical models. Poincare invariance is equivalent to the existence of a con- 
tinuous unitary representation, U(A, a), of inhomogeneous SL(2, @) on the quan- 
tum mechanical Hilbert space [2]. The infinitesimal generators sf U(A, a) are the 
ten self-adjoint operators H, p, 3, k These operators generate time translations? 
space translations, rotations, and rotationless Lorentz transformations. Physically 

p, and 3 are the Hamiltonian, linear momentum, and angular rnQrn~~~~rn 
operators, respectively. The mass operator for this model is 

(1.2) 

The mass operator M can be expressed as a noninteracting part, 
interaction 

V:=M-M,. (1.3) 
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The noninteracting part, MO, is obtained by turning off the interactions in M. The 
interaction can be anything, although if M, describes asymptotic particles, then v 
will be short ranged. For two free scalar particles of mass m, the operator M, has 
the form 

MO = 2(4” + m2)li2, (1.4) 

where 4’ represents the relative momentum of one of the particles. Equations (1.3) 
and (1.4) imply the eigenvalue problem 

C2(4’+m’)112+V] Ic/=& (1.5) 

for the mass eigenvalue p. This equation has the same form as Eq. (1.1). 
Square root operators also appear in a variety of other related contexts in 

relativistic quantum mechanics. Examples are: 

(1) In the expressions for the many-body forces that are required to maintain 
cluster separability in the relativistic few-body problem [3]. 

(2) In the equations that implement the constraints of Poincarb invariance on 
hadronic current operators [4]. 

(3) In the expressions for effective relativistic interactions that are obtained 
from nonrelativistic nucleon-nucleon interactions [S]. 

(4) In models of confined light quarks [6,7]. 

These considerations point to a need for developing numerical methods for treating 
the square root of an unbounded operator. In this paper methods are developed for 
constructing eigenfunctions and eigenvalues of (1.1) when p is in the discrete spec- 
trum of M. The potentials of primary physical interest are the Coulomb potential, 
the linear potential, and Yukawa-like nuclear potentials. 

The main result is that if a basis satisfies certain conditions, then the problem can 
be solved by matrix algebra. These conditions are given in Section 2. The square 
roots are treated as square roots of positive symmetric matrices. 

The contents of this paper are summarized below. In the next section Eq. (1.1) is 
reformulated. Finite rank approximate equations are constructed . These equations 
are the practical basis for the numerical calculations that follow in Section 6. In the 
third section it is shown that the operators in the approximate equation converge 
strongly to those of the exact equation when V is bounded. This condition implies 
that sequences of approximate eigenvalues converge to exact eigenvalues associated 
with the discrete spectrum. In Section 4 it is shown that for bases that are easily 
Fourier transformed, the equations of Section 2 can be modified so that the 
approximate eigenvalues are variational bounds for the exact ones and the 
approximate eigenfunctions converge strongly to the exact ones. This method was 
applied in Ref. [7]. In Section 5 the Culomb, Yukawa, and confining potentials are 
discussed. In all of these cases V is not bounded. In Section 6 numerical tests are 
provided that utilize a spline basis in configuration space. These calculations are 
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compared to the calculations of Ref. [6] and to ~~ariatio~a~ bounds compute 
following Section 4. We apply these methods to the problem of examining the size 
of relativistic corrections to the kinetic energy for systems of Light quarks. 

‘The goal of this paper is to solve the eigenvalue problem 

M$=/$!f (2.1) 

numerically on L2(R3), where 

M=M,+V>O 

MO=2(-V”+m2)“* 

v=vt, Ill v Ill < a. 

GJ.21 

(2.4) 

(X4& 

Hn the above and all that follows, operators are represented by upper case boldface 
letters. 11 jl is the norm on L’(rW3), and /I/ (/I is the norm on L[L2(R3), E2(R3)1. 

Equation (2.1) is solved by first reformulating the equation so that it becomes a 
generalized eigenvalue problem formulated with bounded operators. Finite rank 
approximations of the resulting equation are then made. To perform the first step, 
muhipPy both sides of Eq. (2.1) by M; 1 and factor an 0’ out of $I. This yiel 
generalized eigenvalue problem 

(M,‘+M,‘VM,‘)x=/E 

$=M,‘x, 

The operators in (2.5) and (2.6) have the bounds 

Ill M, ’ Ill = & (2.7) 

It follows that 

lll(~,‘+M,“VM,l)(~~ .+-(I +qj. 

Next, the class of finite dimensional subspaces on which approximate solutions 
are constructed is defined. Let (PN)zzI be a collection of finite dimensional 
orthogonal projection operators with the properties 

(Pl) Dim[IRange(PN)] = N, 
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(P3) s-lim,,, PN = I, 
(P4) Range(PN) c Domain( 
(P5) s-lim,,,+ao MgPNMc2 = I. 

Property (P5) is the only nontrivial restriction on this choice of PN. 
A suflicent condition for property (P5) to hold is that there exists bounded 

operators B, and B, such that 

(P5’) Ill W-XPN - 1) M,2 III < Ill WpN - 1) B, III. 

This condition is satisfied by many choices of (PN};=l. 
Instead of specifying a sequence of projection operators, {P”>;= 1, satisfying 

(Pl)-(P5), it is sometimes useful to specify a basis (dn},“=i that has the property 
that the first N basis functions span the range of PN, where the collection (PN};=, 
satisfy (Pl)-(P5). Such a basis is called an acceptable basis. A basis consisting of 
momentum space spline functions with uniformly bound support can be shown to 
be an acceptable basis by this definition. The projection operators PN associated 
with an acceptable basis have the form 

PN := f fj,P,,qq. 
m,n = 1 

(2.10) 

The N x N matrix, B, with matrix elements P,,, is 

p:=o-‘, (2.11) 

where the matrix elements of 6 are 

om= (L 4,). (2.12) 

This matrix is the identity if the basis is orthonormal. It is always nonsingular 
because (dn};= r is a basis. 

These projectors are used to construct finite rank approximations to each of the 
operators in Eqs. (2.5) and (2.6). The finite rank operators are defined as 

VN= PNVPN 

M2N = P”[M2] PN. 

(2.13) 

(2.14) 

These operators can be expressed in terms of the N x N matrices f and @*, whose 
matrix elements are 

Viz* := (4/z, vh?J (2.15) 

Mit := (+,, 4( -V2 + m’) d,), (2.16) 
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as 

M2N = 2 &,(2%@2Nb),, 4:. (2.18) 
m,n 

The computation of the matrix elements (2.15) and (2.16) do not require the 
evaluation of square roots. The finite rank analog of WI;‘, which is denote 
RI-IN, is defined as 

M-lN= ; &,(I%I-lN&,, & (2.19) 
m,n 

where 

Q--IN= 61/2~p1/2~2NP’/2t--1/2 &l/Z. 

The exponents f indicate the square root of a positive definite Hermitian N x N 
matrix. Equation (2.20) is obtained by solving 

M-‘NMN=pN > (2.21) 

where 

MN.MN=M2N (2.22) 

subject to the condition that the range of these operators coinci es with the range 
of PN. 

To construct the approximate equation, assume that N is sufficiently large t 
the solution to Eq. (2.6) is well approximated by an expression of the form 

xs:=fx,dn. (2.23) 
n 

Equation (2.5) suggests that X, be chosen so xN is the solution of the equation 

(~=v-‘~+-M-~~V~M--~)X,,=.A~( (2.24) 

This equation is equivalent to the following generalized eigenvalue prob 
eigenvalues AN and the coefficients x’,, 

(~-lN+~-lN~~~~-lN)~~~,~-lN~~-!N~~ (2.25) 

The approximate wave function appropriate to problem (2.1) is 
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where 
y&,$-‘“g. (2.27) 

The coefficients 9 are found using (2.27) in (2.25). The result is the equation 

(I+ Aip’qq?) v’= /2&$p’NJ;. (2.28) 

The approximate equations are given by the pairs (2.23) and (2.25) or (2.27) and 
(2.28). 

The general procedure for solving Eq. (2.1) is summarized below: 

(1) Choose an acceptable basis (equivalently a set of projection operators 
satisfying (Pl)-(P5). 

(2) Choose N< co. 
(3) Construct the matrices 8, e kZN by computing the overlap integrals 

(2.12), (2.15), and (2.16). 
(4) Construct P, &“” using Eqs. (2.11) and (2.20). 
(5) Construct the generalized eigenvalue problem (2.25) or (2.28) for the 

eigenvalues 1, and the coefficients x’ or JZ 
(6) Solve the generalized eigenvalue problem; construct the approximate 

eigenfunctions using (2.23) or (2.26). 

It is important to note that this procedure only requires matrix elements of A4’* 
and V as input. Matrix elements of square roots of oprators are not needed. In 
general Eq. (2.1) will have a discrete spectrum and a continuous spectrum. in the 
next section it is shown that if Ai is a discrete eigenvalue of (2.1) then there is a 
sequence of approximate eigenvalues A, with the property that AN, --f AN. It follows 
that physical eigenvalues in the discrete spectrum can be identified by their stability 
with respect to increasing the number of basis functions. 

The procedure outlined above can be simplified under a variety of circumstances. 
The first is to realize that Eq. (2.25) is algebraically equivalent to the equation 

(6AlN6+ P)j=/l,O, (2.29) 

where 
&IN = @2(~1/2&2N~1/2)1/2 @/2. (2.30) 

This is the equation that would be obtained if the procedure, used to obtain (2.25) 
from (2.5), were applied without regard for the boundedness of the operators. If the 
basis is orthonormal then the matrices 6 and P become the Nx N identity matrix. 
Equations (2.29) and (2.30) are then replaced by 

(Ai?“+ ?q+=n,g (2.31) 

and 
@IN = (@N)lP. (2.32) 
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3. CONVERGENCE 

In this section it is proven that the oprators in Eq. (2.24) converge strongly to the 
operators in Eq. (2.5) when V is a bounded operator. This justifies the use of the 
finite rank treatment of the square root operator. This will be used to show that for 
each discrete eigenvalue, A, of Eq. (2.5) there is a sequence of i,‘s that are eigen- 
values of (2.24) with the property that A, -+ A as N + 00. 

The first step is to show that M-‘” converges strongly to 0’. This result is 
expressed by 

THEOREM. Let M-IN be defined by (2.19), where (I’“>;=, satisfies (!?I)-( 
Thea for every 41/ E L2( R3), we have 

This theorem is a consequence of the lemmas: 

LEMMA 1. Let (P”>Gzl satisfy (Pl)-(P5) and let MIN be defined by (2.14). For 
every t/i satisfying 11 Mi+ Ij < co, we have 

LEMMA 2. Let {P”>$=, satisfy (Pl)-(P5) and let 
every + E L2( R3), it follows that 

lim il[(M2Nfi)-1-(M~1i)-1] $11 =Q. 
N+CC 

(3.3) 

To prove Lemma 1 note that for $ E D(Mi) tRat 

II CM=‘- M;) $ II G II M;(PN - 1) $ I/ + li(l - 

The first term on the right-hand side vanishes as IV+ 00 by (P5) because 
+ E D(Mi). The second term vanishes because (/ Mi$ // < a. This proves Lemma 1. 

To prove Lemma 2 let let 01= -t i, $ E L2(R3) and use the second resolvent 
relations lo obtain 

llC(~+M2N)-1-(~+M~)-1111/ll~ll(M2N-M~)5jj, (3.5) 

where 

5= Ha+%-‘I $ 04) 

since I/ Mit I/ d (const.)(( $ I[ < a, the desired result follows by applying Lemma 1 to 
the right-hand side of (3.5). This proves Lemma 2. 
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The theorem is proven by combining Lemma 2 with the Weierstrass 
approximation theorem [S]. To do this define the continuous function 

f(Y) := 
2mfi 

[ 1 + 16m4 + J( 1-t 16~2~)~ - (1 + y)2 16~~2~3~‘~ (3.7) 

on [ - 1, 11. This function is obtained by solving 

(3.8) 

for x-112 as a function of y. By the Weierstrass approximation theorem there are 
coefficients a, such that 

for all y E [ - 1, 11. It follows that 

Ill f(Y) - g %W Ill < of) (3.10) 
n=O 

for 

and 

1+ 16m4 1 
Y=Y,=-1+ 4m2 

i 
- - M”“+i+$-i 

(3.11) 

(3.12) 

since in both cases of o(Y) E [ - 1, 11. It is important to note that the bound in 
(3.9) is independent of the N in (3.12). To prove the theorem observe that 

ll(M-lN--~l) $ II 

= II (f(YN) -f(Yo)) * II 
+w- : o,(YNY)i~j+n~oa,n II(yN-yo)~ll 

?I=0 

+ 
lI( 

Iv,)- f 4Yo)” + ? 
?Z=O > II 

(3.13) 

where the last step follows because )/I Y, I/j, )/I Y, 111 < 1. The first and last terms in 
(3.13) can be made arbitrarily small by (3.10) while the middle term can be made 
arbitrarily small by Lemma 2. This proves the theorem. 
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It foollows from the theorem and the fact that V is bounded that the operators in 
(2.24) strongly converge to the operators in (2.5). 

Next the implications of this strong convergence on the eigenvalue spectrum and 
the eigenfunctions are considered when &, is a discrete eigenvalue of Eq. (2.1) wit 
eigenfunction $O. Equations (2.5) and (2.6) are rewritten as 

(1 +M,‘V) l//o=aolwllc/o. (3.14) 

Assume that (,I$] and {I+!$) are solutions of the corresponding finite rank equation 

(3.15) 

The solutions of (3.15) are chosen to be orthonormal. These equations have the 
form 

No = LOW, 
and 

A”‘$; = $$“I& 

respectively. $O can be expanded in terms of the Q!J; to obtain 

(3.16) 

(3.17) 

and compute 

I((AN-&BN)$o[( = f' ~u,/~(I&-&)~ 
i fl=l 

(3.18) 

(3.19) 

Hf this is combined with (3.16), we obtain 

IJ(AN-&BN)$O/I= 
[ 

f 1a,/2(Ag,-&)2 
n=l 

~ll(A-AN)$oIl+l~o/ (3.20) 

The right-hand side necessarily vanishes as N -+ co as a result of the theorem. If we 
let 2% be the eigenvalue that minimizes \(,I$ - &,)I, we obtain 

p”$-/l,I < (ll(A-AN)~~/l+/~o///~B-~*)~~l/) 
II pN+o II 

(3.21) 

which clearly vanishes as N + co. Thus at least one of the eigenvalues of the 
approximate eigenvalue problem can be made arbitrarily close to one of the exact 
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eigenvalues by choosing N sufficiently large. If (3.20) and (3.21) are combined we 
obtain 

(3.22) 

The right-hand side of this expression can be made arbitrarily small by taking N 
sufficiently large. Thus the solution $,, to (3.14), satisfies the finite rank equation 
(3.15) to any desired accuracy for some A$ and sufficiently large N. 

It is useful to summarize the three main results of this section. First, the 
operators in the finite rank equaton (2.25) converge strongly to the operators in 
(2.5). Second, to each discrete eigenvalue of Eq. (2.5), there is an eigenvalue of 
(2.25) that is arbitrarily close to i, for sufficiently large N. Third, each discrete 
eigenfunction, $o, of (3.16) satisfies (3.17) to any desired accuracy for some A$ with 
sufficiently large N. 

4. VARIATIONAL METHODS 

In this section it is shown how the results of the last section can be improved 
when { 4, IF= i represents an acceptable basis that is easily Fourier transformed. In 
this case MC’ is a multiplication operator in the momentum representation. 
Because of this it is possible to construct approximate finite rank approximations 
by taking matrix elements of the operators in (2.5) directly. This method has been 
previously applied by Stanley and Robson [7] using a harmonic oscillator basis. In 
this case Eq. (2.25) is replaced by 

5 (xm CM,‘+M,‘VM,‘Ix,)~m= 5 ~x~>M,~x~)x, (4.1) 

The theorem of Section 3 also applies to Eq. (4.1). The operators in (4.1) all con- 
verge strongly to their exact counterparts. The other results of Section 3 also hold 
when MC l is absorbed into the wave function from the left of (4.1). 

Equation (4.1) has two additional features. This first is that the lowest k eigen- 
values of (4.1) are variational upper bounds on the lowest k eigenvalues of (2.5). 
This property is not realized in the method of Section 3. The second property is 
that if $0 is the eigenvector of (2.5) with the kth smallest eigenvalue, /Zk, and c$‘, is 
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the eigenvector of (4.1) and (4.2), [&.= (2,f~))’ xi] with the Zth smallest 
eigenvalue, then 

lim (b’,, $o) = 0 (l#k). (4.3) 
N+‘X 

To show that the lowest k eigenvalues of (4.1) are variational upper bounds on 
the lowest k discrete eigenvalues of (2.5), fix N and let (lK)t= I be solutions of (4.3) 
with eigenvalues 1%. Let 5 be any linear combination of the t,‘s; 

Then 

N 

i”= 1 amL. 
m=l 

where A0 is the smallest eigenvalue of (2.5). Thus the lowest eigenvalue of the 
approximate problem is a variational upper bound on h. 

To extend this principle to the lowest k eigenvalues of (2.5) the functional 

(4.5) 

is defined. The first k eigenvectors of (4.1) span a k dimension linear space on which 
the functional A([) is at or below the maximum of these k eigenvalues. Tbus the 
linear space 

{Elmw”,) 14.6) 

is at least k dimensional. Thus Eq. (2.5) must have at least k eigenvalues with values 
less than or equal to the largest of the {~,}~~,. 

These variational bounds can be combined with Eq. (3.20) to obtain 

This means that for every E > 0, there is an N such that 

This result holds for the equations of Section 2. The variational bounds on the 
eigenvalues guarantee that for sufficiently large N the denominators are uniformly 
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bound away from 0, except for the case when n = m, where 1, is the mth smallest 
eigenvalue of (2.5). This shows that 

lim a,N=O if n#m (4.9) 
N+CC 

which is the other main result of this section. These results apply to the technique 
used in Ref. [7] provided the basis satisfies condition (P5). 

5. COULOMB, YUKAWA, AND CONFINING POTENTIALS 

The situation that the potential V is a bounded operator does not include some 
of the cases of most physical interest. Two different types of unbounded potentials 
are frequently encountered in applications. The first occurs when the potential has a 
l/r singularity at the origin. This occurs in the case of Coulomb interactions, 
Yukawa-like strong interactions, and quark-antiquark interactions. A second class 
of physically interesting potentials is confining interactions such as the linear and 
harmonic oscillator potentials. These potentials arise in problems related to quark 
confinement. 

We first consider the case of the l/r singularity. From a theoretical point of view, 
this type of potential might be expected to cause difficulties. It is known that the 
combination of the l/r potential and the square root operator lead to singular 
behavior at the origin [9]. In our approach the l/r potential causes no special 
problems. What makes the l/r potential nice is that even though V, is unbounded, 

M,‘VM,’ (5.1) 

is bounded. This means that the finite rank approximations based on Eq. (4.1) con- 
verge strongly to the exact Eq. (2.5). The variational bounds of the previous section 
also hold. 

To show that MG~VM;’ is bounded for a l/r potential, let 

V(r) =f_lT2 
r ’ 

where f (r) is bounded. V(r) is rewritten as 

V(r) = 
( 
f(r) f(o)e--Br +ftoJe-a 

r r > r 

(5.2) 

= V,(r) +fW V,(r). (5.3) 
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V,(r) is bounded. It is shown that MT’ Vy(r) MC’ is MiIbert-Schmidt ( 
and consequently bounded: 

I/l~,“~,M,‘Il! d IllJGII/,~,‘/I/~~= 
d3R d3R’ 

X(k-k’)2+B24(k’)2+m2(k-k’) 

This shows that M; ‘VM;r is a bounded operator. This analysis shows that 
Coulomb-like singularities can be treated with Eq. (4.1). 

The second class of unbounded potentials of interest are the confining potentials. 
To render these in a form amenable to strongly convergent approximations, we let 
y be a constant such that 

y+ v>o. (5.5) 

Equation (2.1) may be rewritten in the form 

i 
M&- 

V 
y+V+W- 

Y+v 

(~/=M,“x. (5.7) 

The approximation theorem of Section 3 is still valid for ;*. Finite rank 
approximations to V/(y + V) and (y + V) -I can be computed directly. This 
equation can be discretized as in Sections 3 or 4. The results of Sections 3 and 4 
hOld. 

In numerical applications we found that it was not necessary to make the irans- 
formation (5.6) to obtain reliable numerical solutions. 

6. NUMERICAL TESTS 

In this section the computational methods discussed in this paper are tested The 
method of Sections 2-4 is applied to solving the equations 

i 
2[mLv*]11*- (6.1) 

and 

( 
2[Tm2-vy -$+c,r I)=/.$. 

1 
(6.2) 

The parameters used are m = 0.313 GeV, C, = 0.5, and C, = 0.197 (GeV)‘. These 
parameters are chosen so that we can compare our results for Eq. (6.2) with the 
results of Ref. [6]. Calculations for (6.1) do not exist. The choice C, = 0.5 is 
interesting because it leads to a strong Coulomb field where one anticipates more 
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numerical difficulties. In this case calculations based on the method of Section 2 are 
compared to variational calculations of Section 4. 

Equation (2.28) is used to compute the eigenvalues where the basis functions are 

tin(?) =$ S,(r) e-r”lYL,(i). 

The functions S,(r) are de Boors B-splines 1111). They are piecewise polynomials of 
degree 3 that have compact support and one continuous derivative everywhere. 
This choice has not been checked to see if it leads to a set of projection oprators 
{P”I satisfying (P5). The coeflicient a allows us to include singularities in our basis 
functions that are expected from theoretical considerations [9]. 

Equation (4.1) is solved for the variational calculations using the basis 

qSn(?) = N,r”-“emPrY, (6.4) 

N = (2p)“-a+3’2 
n 

&2n-2a+3) 
(6.5) 

which have the Fourier transforms 

xsin 
i 

(n+2-a)tan-’ 5 
( )i 

p cdk^). 

Matrix elements of both potentials in (6.1) and (6.2) can be computed analytically 
in this basis. The results are 

Vn”,= -C,N,N, _f_ 
( 1 

ntm-2a+2 

20 
r(n+m-2a+2) (6.7) 

for the Coulomb potential and 

V,L, = C,N,N, -!- 
( ) 

n+m-2at4 

33 
T((n+m-2af4) (6.8) 

for the linear potential. The matrix elements of Mg are computed numerically in this 
basis using the following points and weights in momentum space 

k,=/Itan(yn) (6.9) 

a, = 2Nfi -qkt,+P2). 

These integrate polynomials of degree <2N in 1/(k2 + /J2) exactly. 
The results of the numerical calculations of the eigenvalues of Eqs. (6.1) and (6.2) 

are shown in Tables I-X. Tables I-IV show the results of four different calculations 
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TABLE I 

NS N=O,L=O N=l,L=O N=2,L=Q 

8 0.605488 0.621530 0.424438 
12 0.605348 0.621208 0.624169 
16 0.605323 0.621074 0.624011 
20 0.605299 0.621012 0.623919 
24 0.605184 0.620979 0.623865 
28 0.605244 0.620958 0.623833 
32 0.605143 0.620944 0.623813 
36 0.605130 0.620934 0.624018 

Note. CC== -0.5, m =0.313 GeV, a =O. 

TABLE II 

N N=O, L=O 

5 0.605242 
6 0.605214 
7 0.605193 
8 0.605177 

Note. CC= -0.5, m=0,313GeV, a=O. 

N=l, L=O N=2,L=O 

0.620897 0.623848 
0.620894 0.623773 
0.620892 0.623763 
0.620890 0.623756 

TABLE III 

NS N=O, L=O N=l,L=Q N=2,L=O 

8 0.606037 0.621333 0.624366 
12 0.605798 0.621148 0.624088 
16 0.605648 0.621103 0.623940 
20 0.605548 0.621081 0.623868 
24 0.605477 0.621062 0.623837 
28 0.605477 0.621044 0.623823 
32 0.605379 0.621028 0.623817 
36 0.605389 0.621014 0.623813 

Note. CC= -0.5, m=0.313 GeV, c( =0.191. 

TABLE IV 

N N=O, L=O N=l,L=Q N=I.?,L=G 

5 0.60506565 0.62087646 0.62384916 
6 0.60506341 0.62087625 0.62377917 
7 0.60506232 0.62087616 0.62375772 
8 0.60506178 0.62087611 0.62375329 

Note. CC= -0.5, m =0.313 GeV, a ~0.191. 
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TABLE V 

NS N=O, L=O N=l, L=O N=2, L=O 

8 1.420849 2.130627 2.682589 
12 1.419318 2.114944 2.649517 
16 1.418860 2.111962 2.437593 
20 1.418620 2.111215 2.634497 
24 1.418466 2.110905 2.633593 
28 1.418318 2.110654 2.633116 

Ref. [6] 1.43 

Note. CC= -0.5, CL=O.l97(GeV)‘, m==0.313 GeV. 

of the first three L = 0 eigenvalues of Eq. (6.1). Tables V-X show the results of 
calculations of the N < 3, L < 4 eigenvalues of Eq. (6.2). Tables XI and XII illustrate 
the use of the methods introduced in this paper to estimate the size of relativistic 
effects in models of light quarks. 

Tables I and III utilize the method outlined in Section 2. The functions in 
Eq. (6.3) are used as a basis. The splines are such that only four of the functions 
S,(r) are nonzero between any adjacent pair of breakpoints. We use a finite number 
of equally spaced breakpoints on an interval [O, RMAX]. The number of splines 
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FIG. 1. Singular behavior of the relativistic ground-state Coulomb wave function. 
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N N=O, L=O N=l,L=O N=2.L=Q 

5 1.418778 2.124193 2.689752 
6 1.418698 2.117667 2.689520 
7 1.418698 2.113101 2.675678 
8 1.418657 2.111703 2.654051 

Ref. 161 1.43 

Note. CC= -0.5, CL = 0.197 (GeV)Z, m = 0.313 GeV. 

(I’S) that appear in the tables is related to the number of breakpoints (N 
NS = 2 NB -2. Convergence is tested by increasing the number of breakpoints. 
Equally spaced breakpoints are not the best choice for calculations, however, they 
allow for a systematic study of the convergence properties. Because the eigen- 
functions for different values of the principal quantum number N are so different, it 
was necessary to use a different value of r1 and RMAX to compute each of the 
columns of Tables I and III. The values of r1 were chosen to be the approximate 
RMS separation between the particles in the eigenstate in question. The val 
RMAX was chosen to be a distance after which the wave function had fall 
least four orders of magnitude below its maximal value. The parameter rL and 
RMAX are r1 = 20.72, 80, 170 (GeV) and RMAX = 120, 400, 700 (GeV) for N= 0, 
1, and 3, respectively. The calculations in these two tables differ in the value af the 
parameter CL Reference [9] predicts that for Y near the origin, the ground-state 
wave function behaves like (6.3) with cn = 0.191 (for this choice of CC). (The eigen- 
value spectrum predicted in Ref. [9] is known to be incorrect [12] and does not 
agree with our results.) The calculations in Table I have CI = while those in 
Table III have a = 0.19 1. 

The other two tables use the variational method discussed in Section 4. They use 
the basis (6.4) with l/j? = 20 (GeV). For this calculation it is sufficient to work with 

TABLE VII 

NS N=O,L=l N=l,L=l 

8 1.940474 2.526819 
12 1.936778 2.481394 
16 1.936569 2.478867 
20 1.936479 2.478702 
24 1.936437 2.418557 
28 1.936419 2.418470 

Ret [6] 1.94 

Note. CC= -0.5, CL=O.197 (GeV)2, m=0,313GeV, 

N=2,i‘=l 

3.092469 
2.949161 
2.930141 
2.929350 
2.929210 
2.929036 
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TABLE VIII 

NS N=Q, L=2 N=l,L=2 N=2,L=2 

8 2.329840 2.808288 3.303489 
12 2.321951 2.193179 3.203620 
16 2.318731 2.786015 3.193245 
20 2.317956 2.782553 3.188516 
24 2.317770 2.78 1409 3.185776 
28 2.317716 2.781061 3.184693 

Ref [6] 2.32 

Note. CC= -0.5, CL=O.l97(GeV)*, m=0.313GeV. 

one value of p for N = 0, 1, and 2. Tables II and IV show the result of this 
calculation for different numbers of basis functions with CI = 0 and CI = 0.191, respec- 
tively. This calculation has the advantage that the eigenvalues are variational 
bounds on the exact eigenvalues. They also provide a good consistency of the 
calculation in Tables I and III. The results of all four are consistent. The inclusion 
of a nonzero a has a 0.03 % effect on the ground-state eigenvalue in the variational 
calculations. It results in a lowering of the variational energy. 

An interesting question is whether there is any numerical evidence of the singular 
behavior of the wave function prediced in [9]. The configuration space spiines have 
the advantage that they are localized in configuration space. Even though a basis 
with a = 0 cannot possibly be used to accurately represent a function with a non- 
integer value of a near the origin, if we put a few breakpoints near the origin the 
desired behavior should appear near the origin. In this case near is defined as a dis- 
tance beyond a few breakpoints. To test this we calculate r d/dr ln[$(r)] as a 
function of r for points near the origin but beyond the first two breakpoints, where 
$ is the ground-state solution of (6.1) with a = 0. The results of this calculation are 
plotted in Fig. 1. If we extrapolate the curve that goes through these points to the 
origin, we obtain an estimate for a. The prediction of Ref. [9] is consistent with the 
calculations in Fig. 1, which suggest a value of a between -0.15 and -0.2. 

TABLE IX 

NS N=O,L=3 N=l,L=3 N=2,L=3 

8 2.662795 3.1012672 3.496928 
12 2.642299 3.067238 3.461868 
16 2.640033 3.053762 3.427641 
20 2.639883 3.051394 3.421441 
24 2.639872 3.051139 3.419517 
28 2.639862 3.051107 3.419289 

Ref. [6] 2.65 

Note. CC= -0.5, CL=O.197 (GeV)2, m=0.313 GeV. 
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TABLE X 

NS N=O,L=4 N=l,L=4 N=2,L=4 

8 2.946010 3.394339 3.732608 
12 2.925921 3.306771 3.672389 
16 2.925330 3.299750 3.644594 
20 2.925285 3.298824 3.640246 
24 2.925230 3.298865 3.639646 
28 2.925204 3.298771 3.639590 

Ref. [6] 2.93 

Note. CC= -0.5, CLzO.197 (GeV)*, WI =0.313 GeV. 

The calculations in Tables V-X are for Eq. (6.2). Spline and variational 
calculations are presented for the case L = 0 in Tables V and VI. In this example 
each table uses a single value of rl and RMAX. In all of these calculations we 
set a = 0. Spline calculations are also performed for L = 1, 2, 3, and 4. 
these values because other variational Monte Carlo calculations [6] exis 
values of L. The values of rl and RMAX used for L = 1, 2, 3, 4 are 3, 5, 6, 7.5, 8 
(GeV) and 20, 22, 24, 25, 26 (GeV), respectively. The variational calculations in 
Table VI are for l/p = 20 (GeV). Both calculations in Tables V and VI are in good 
agreement with the results of Ref. [6] and with each other. The spline ca~~u~a~io~s 
in Tables VII-X are also in good agreement with the calculations of Ref. [6j. 
were unable to find analytic Fourier transforms of the functions (6.4) for value 
L > 0 so we did not do variational calculations for nonzero values of L. 

The calculation of relativistic corrections to the kinetic energy for systems 
quarks is a typical application of the methods introduced in this 
done by comparing the mass eigenvalues of Eq. (6.2) w 
corresponding nonrelativistic equation 

TABLE XI 

State N=O, L=O N=l,L=O N=2,L=O 

Eq. (6.9) 1.643” 2.608" 3.374" 
Eq. (6.2) 1.418" 2.110” 2.633" 

AP 0.225" 0.498" 0.741" 

Air - 
m 

2.31 

a In GeV. 
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TABLE XII 

State 

Eq. (6.9) 
Eq. (6.2) 

AP 

4 - 
m 

(N=O,L=O)-(N=O,L=O) (N=2,L=O)-(N=i,L=O) 

0.965” 0.766” 
0.692” 0.523” 
0.273” 0.243” 

a In GeV. 

We compare the results of these two calculations in Tables XI and XII. Both 
calculations use m = 0.313 GeV, C, = 0.5, and C, = 0.197 (GeV)‘. Table XI com- 
pares the difference in the eigenvalues obtained from these two equations in the first 
three states. These differences are compared to the mass of the quark. Table XII 
does the same thing for the splittings between energy levels. In both sets of 
calculations we see large relativistic effects. 

In this paper we have devised new numerical methods for solving eigenvalue 
problems with square root operators. This was done in two steps. The first was to 
reformulate the equation into an equation involving only bounded operators. The 
second step is to make strong finite rank approximations to these operators. 
Specific calculations are performed based on the methods introduced in Sections 3 
and 4. The results of the two calculations are consistent with each other and con- 
sistent with the results of Ref. [6]. The main conclusion is that for a basis that 
satisfies condition (P5), a finite rank treatment of square root operators involving 
an eigenvalue problem is justified. 
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